首页> 外文OA文献 >Contribution of Malic Enzyme, Pyruvate Kinase, Phosphoenolpyruvate Carboxylase, and the Krebs Cycle to Respiration and Biosynthesis and to Intracellular pH Regulation during Hypoxia in Maize Root Tips Observed by Nuclear Magnetic Resonance Imaging and Gas Chromatography-Mass Spectrometry1
【2h】

Contribution of Malic Enzyme, Pyruvate Kinase, Phosphoenolpyruvate Carboxylase, and the Krebs Cycle to Respiration and Biosynthesis and to Intracellular pH Regulation during Hypoxia in Maize Root Tips Observed by Nuclear Magnetic Resonance Imaging and Gas Chromatography-Mass Spectrometry1

机译:苹果酸酶,丙酮酸激酶, 磷酸烯醇式丙酮酸羧化酶和克雷布斯循环 呼吸和生物合成以及细胞内pH调节 核磁共振观察的玉米根尖缺氧 成像和气相色谱-质谱法1

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.
机译:苹果酸酶(ME)和丙酮酸激酶的体内丙酮酸合成以及磷酸烯醇丙酮酸羧化酶的体内苹果酸合成和Krebs循环是通过将[1-13C]葡萄糖掺入6-磷酸葡萄糖,丙氨酸,谷氨酸,天冬氨酸,和苹果酸。这些代谢物是在有氧和低氧条件下从玉米(Zea mays L.)的根尖中分离出来的。使用13 C-核磁共振波谱和气相色谱-质谱法识别每种代谢物中的同位素位置分布。该信息被应用于简单的前体产物模型,该模型能够计算特定的代谢通量。在呼吸的根尖中,发现ME仅贡献了约3%的合成丙酮酸,而丙酮酸激酶则贡献了平衡。在缺氧早期,ME的活性增加了6倍以上,然后随着胞质苹果酸和天冬氨酸的消耗而下降。我们发现,在呼吸的根尖中,相对于ME,过高的磷酸烯醇丙酮酸羧化酶活性较高,因此并不限制ME合成丙酮酸。关于通过分离的线粒体利用苹果酸和丙酮酸以及在缺氧条件下调节细胞内pH的问题,讨论了ME体内合成丙酮酸的重要性。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号